A privacy-preserving authentication service using mobile devices

Mihai Togan
Security Software Architect
certSIGN
Context

Mobile devices
- Present everywhere

High performance
- Computing power
- Security features

2 factors authentication
- Good candidates
- Easy to use

What to consider

Credentials transfer
- QR codes

Authentication protocols
- UProve
- FIDO
Agenda

1. QR-based Authentication
 • QR-based Authentication using PKI

2. U-Prove & FIDO protocols

3. Privacy-preserving Authentication
 • FIDO Attribute-based Authentication
 • FIDO Authentication with Privacy-preserving

4. Use-cases

5. Conclusions
QR-based Authentication

- **The aim**: authentication and authorization for the user on the Service Provider’s web application
- Credentials stored on the mobile device
- Identity transfer from the user’s mobile phone to his desktop by using QR codes
- **Authentication phase** (user’s mobile – QR Authenticator)
- Multiple solutions:
 - **PKI**, TLS, FIDO, custom
- A *Honest* QR Authenticator adds privacy-preserving for the user
QR-based Authentication using PKI

- **PKI authentication of the user to QR Authenticator**
 - Secure key storage (Android/iOS key store, hardware secure element)
 - Digital signatures on the smartphone

- **Authentication process**
 1. The user signs the QR code content using **his private key** and **certificate** stored **on the mobile phone**
 2. The phone sends the signed content and his certificate to the QR Authenticator server using a special connection
 3. The QR Authenticator server verifies the digital signature, the content and the digital certificate of the user
 - If verification succeeds, the user is granted an access token which will be sent to the Service Provider
QR-based Authentication using PKI, cont.

- Two-factor authentication mechanism
 - The smartphone (something the user has)
 - The password to access the certificate from the smartphone (something the user knows)
 - A hardware secure element can be used to protect the private key

- Problems...
 - A PKI infrastructure needed
 - CA to manage the users’ certificates
 - Requires digital certificates on mobile device
 - Users’ enrollment to get certificates
 - Users’ certificates path validation
 - Users’ certificates revocation status checking (OCSP service)

- Best fit in PKI enabled environments
U-Prove

- Attribute-based cryptographic protocol providing user’s privacy
 - Maintained by Microsoft

- Three entities involved
 - The user (the prover)
 - The issuer – issues attribute containers
 - The verifier – verifies user’s proofs (attributes)

- Two main protocols
 - **Issuing protocol** (issuer ↔ user)
 - Issuing the *Token Information* (TI) including user’s attributes
 - **Presentation protocol** (user ↔ verifier)
 - Proving user’s attributes validity & the user’s private key ownership
 - Proof generation sub-protocol (user – device)
 - Proof verification sub-protocol (user – verifier)

- Main idea: disclose only the required attributes to verifier
 - *Unlinkability*
 - *Untraceability*
U-Prove (cont.)

• On the server-side
 • Issuer (web-app)
 • Verifier (web-app)
 • REST API interface
 • WS-Trust Serialization [Paq11]

• On the user-side
 • Android application
 • U-Prove attributes stored as blobs in the application database

FIDO

• Passwordless authentication framework
 • FIDO Alliance (great support)
 • UAF, U2F

• FIDO entities
 • FIDO server (server-side)
 • FIDO client (client-side)
 • FIDO authenticator (client-side, trusted HW device)

• FIDO protocols: registration, authentication, deregistration
 • Generate user RSA key-pair
 • Challenge-response protocol
 • User unlocks his private key using various protection mechanisms

• Protocol messages
 • Extensions (used in our work to include attributes in FIDO)

• FIDO extension (not Extensions!)
 • FIDO Attribute-based Authentication
 • FIDO Authentication with Privacy-preserving
FIDO Attribute-based Authentication

• Combine the FIDO and U-Prove
 • With FIDO: user authentication
 • With U-Prove: user authorization (based on attributes)
 • Improved security layer on the server side
 • Granular access

• FIDO extended version
 • FIDO UAF standard messages (not modified)
 • Usage of FIDO extensions to carries user’s attribute info
 • Server asks the required attributes using AuthenticationRequest
 • The client responds with U-Prove proofs in AuthenticationResponse
 • Attributes are embedded in Response extensions
FIDO Attribute-based Authentication

Dictionary AuthenticationRequest {
 required OperationHeader header;
 required ServerChallenge challenge;
 Transaction[] transaction;
 required Policy policy;
}

Authentication Request
FIDO server → User

Dictionary AuthenticatorSignAssertion {
 required DOMString assertionScheme;
 required DOMString assertion;
 Extension[] exts; /* Serialized U-Prove proof */
}

Authentication Response
FIDO ASM → FIDO server

Dictionary Extension {
 required DOMString id; /* Bind to 'U-Prove - attribute' */
 required DOMString data; /* Required attribute encoded as base64 */
 required boolean fail_if_unknown; /* Bind to true */
}
FIDO Attribute-based Authentication

- Does not provide:
 - Unlinkability
 - Untraceability
FIDO Authentication with Privacy-preserving

- The user doesn't trust the FIDO server
- Unlinkability and Untraceability are required
- FIDO and U-Prove logic are separated
 - Step 1 (UP-Issuing), after FIDO authentication. User receives:
 - "authenticated" attribute
 - "validity timeframe" attribute
 - Step 2 (UP-Presentation): U-Prove authorization
 - User presents attributes to U-Prove verifier
 - Get a K-anonymity scheme
Use cases

• Pilot implementation – ReCRED project
 – Access to campus resources
 • Registered professors and students
 • Granting access to guests
 – Access to on-line restricted content
 • 18+
 • Legislation can be enforced

www.recred.eu
Conclusion

• Mobile devices are used for 2 factor authentication
 – Credential transfer – QR codes
 – Authentication protocols
 • U-Prove
 • FIDO
• Combination of authentication protocols
 – Easy to use (FIDO)
 – Privacy preserving (U-Prove)
 • Untraceability
 • Unlinkability
• Pilot implementation – ReCRED project

• Next steps
 – Implementation using TEE equipped hardware
Thank you!